RECOMMENDATION SYSTEMS FOR DECISION MAKING. STATE OF THE ART

SISTEMAS DE RECOMENDACIÓN PARA LA TOMA DE DECISIONES

Authors

  • Bárbara Bron Fonseca
  • Omar Mar Cornelio

DOI:

https://doi.org/10.47230/unesum-ciencias.v6.n1.2022.289

Keywords:

Recommender Systems; state of the art; collaborative filtering; packed in content; knowledge based.

Abstract

Recommender Systems (RS) are information filtering techniques that were born with the aim of facilitating or assisting the user in making a decision. The main objective of these systems is to solve information overload problems, providing the user with synthesized information that can be used in decision making. The techniques used to carry out the recommendations differ from each other significantly, both in the information required and in the processes necessary to carry out these recommendations. This research aims to conduct a study on the current state of the art of SR. The study revealed that although the most widely used and well-known SRs are collaborative and content-based, they are not the most appropriate in all situations.

 

Downloads

Download data is not yet available.

References

Aditya, P., Budi, I., & Munajat, Q. (2016). A comparative analysis of memory-based and model-based collaborative filtering on the implementation of recommender system for E-commerce in Indonesia: A case study PT X. 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS),

Alshammari, M., Nasraoui, O., & Sanders, S. (2019). Mining Semantic Knowledge Graphs to Add Explainability to Black Box Recommender Systems. IEEE Access,7, 110563-110579. https://doi.org/10.1109/ACCESS.2019.2934633

Aprilianti, M., Mahendra, R., & Budi, I. (2016). Implementation of weighted parallel hybrid recommender systems for e-commerce in indonesia. 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS),

Barranco, M., Pérez, L., & Martínez, L. (2006). Un sistema de recomendación basado en conocimiento con información lingüística multigranular. In Proceedings of the SIGEF XIII: Optimization techniques: Fuzziness and nonlinearity for management and economy.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: Using social and content-based information in recommendation. Aaai/iaai,

Batyrshin, I. Z., & Sheremetov, L. B. (2006, 3-6 June 2006). Perception Based Associations in Time Series Data Bases. NAFIPS 2006 -2006 Annual Meeting of the North American Fuzzy Information Processing Society,

Bello, R., & Verdegay, J. L. (2010). Los conjuntos aproximados en el contexto de la Soft Computing. Revista Cubana de Ciencias Informáticas,4 pp. 5-24. .

Boran, F. E., Akay, D., & Yager, R. R. (2016). An overview of methods for linguistic summarization with fuzzy sets. Expert Systems with Applications,61, 356-377.

Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems,69(Supplement 32), 175-186.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction,12(4), 331-370.

Castagnos, S., Jones, N., & Pu, P. (2010). Eye-tracking product recommenders' usage. Proceedings of the fourth ACM conference on Recommender systems,

Cornelio, O. M., Gulín, J. G., Fonseca, B. B., & Ching, I. S. Experiencia en la evaluación de competencias en un sistema de laboratorios a distancia. Anais do Encontro Virtual de Documentação em Software Livre e Congresso Internacional de Linguagem e Tecnologia Online,

Chen, C., Wang, D., & Ding, Y. (2016). User actions and timestamp based personalized recommendation for e-commerce system. 2016 IEEE International Conference on Computer and Information Technology (CIT),

Chen, L., & Pu, P. (2005). Trust building in recommender agents. Proceedings of the Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces at the 2nd International Conference on E-Business and Telecommunication Networks,

Cho, Y. S., & Ryu, K. H. (2008). Implementation of personalized recommendation system using demograpic data and RFM method in e-commerce. 2008 4th IEEE International Conference on Management of Innovation and Technology,

Dong, F., Luo, J., Zhu, X., Wang, Y., & Shen, J. (2013). A personalized hybrid recommendation system oriented to e-commerce mass data in the cloud. 2013 IEEE International Conference on Systems, Man, and Cybernetics,

Fan, Y., Shen, Y., & Mai, J. (2008). Study of the model of e-commerce personalized recommendation system based on data mining. 2008 International Symposium on Electronic Commerce and Security,

Finder, L. Intelligent user profiling using large-scale demographic data. Artificial Intelligence Magazine. v18 i2, 37-45.

Fonseca, B. B., Benítez, L. C. M., & Oliva, Á. M. H. (2019). La estructura de desglose del trabajo como mecanismo viable para la generación de proyectos exitosos. Serie Científica de la Universidad de las Ciencias Informáticas,12(5), 63-75.

Fonseca, B. B., Cornelio, O. M., & Marzo, F. R. R. (2020). Tratamiento de la incertidumbre en la evaluación del desempeño de los Recursos Humanos de un proyecto basado en conjuntos borrosos. Serie Científica de la Universidad de las CienciasInformáticas,13(6), 84-93.

Freire, J. B., Villagomez, M. M., Delgado, M. A. S., &Gónzalez, M. P. (2016). Modelo de recomendación de productos basado en computación con palabras y operadores OWA [A product recommendation model based on computing with word and OWA operators]. International Journal of Innovation and Applied Studies,16(1), 78.

Gaikwad, R. S., Udmale, S. S., & Sambhe, V. K. (2018). E-commerce recommendation system using improved probabilistic model. In Information and Communication Technology for Sustainable Development(pp. 277-284). Springer.

Gao, Z., Li, Z., & Niu, K. (2016). Solutions for problems of existing E-commerce recommendation system. 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),

García, F. J., & Gil, A. B. Personalización de Sistemas de Recomendación. Universidad de Salamanca.

Gatchalee, P., Li, Z., & Supnithi, T. (2013). Ontology development for SMEs E-commerce website based on content analysis and its recommendation system. 2013 International Computer Science and Engineering Conference (ICSEC),

Gkika, S., & Lekakos, G. (2014, 6-7 Nov. 2014). Investigating the Effectiveness of Persuasion Strategies on Recommender Systems. 2014 9th International Workshop on Semantic and Social Media Adaptation and Personalization,

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM,35(12), 61-70.

Hammond, K. J. (2012). Case-based planning: Viewing planning as a memory task. Elsevier.

Herrera, F. (2000). A 2-tuple fuzzy linguistic representation model for computing with words.8(6), 746–752. https://doi.org/10.1109/91.890332

Hu, R., & Pu, P. (2010). A study on user perception of personality-based recommender systems. International Conference on User Modeling, Adaptation, and Personalization,

Huseynov, F., Huseynov, S. Y., & Özkan, S. (2016). The influence of knowledge-based e-commerce product recommender agents on online consumer decision-making. Information Development,32(1), 81-90.

Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications,28, 94-101.

Itmazi, J. (2005). Sistema flexible de Gestión del eLearning para soportar el aprendizaje en las Universidades tradicionales y abiertas.

Jannach, D., & Friedrich, G. (2013). Tutorial: recommender systems. International Joint Conference on Artificial Intelligence Beijing,

Jiang, L., Cheng, Y., Yang, L., Li, J., Yan, H., & Wang, X. (2019). A trust-based collaborative filtering algorithmfor E-commerce recommendation system. Journal of Ambient Intelligence and Humanized Computing,10(8), 3023-3034.

Ku, Y.-C., Peng, C.-H., &Yang, Y.-C. (2014). Consumer preferences for the interface of e-commerce product recommendation system. International Conference on HCI in Business,

Lorenzi, F., & Ricci, F. (2005). Case-based recommender systems. In Encyclopedia of Data Warehousing andMining(pp. 124-128). IGI Global.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: a survey. Decision Support Systems,74, 12-32.

Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T.(2012). Recommender systems. Physics reports,519(1), 1-49.

Lugo , J. A. (2012). Modelo para el control de la ejecución de proyectos basado en indicadores y lógica borrosa.

Luo, Y. (2012). An analysis of Web mining-based recommender systems for e-commerce. Proceedings of the 2012 International Conference on Computer Application and System Modeling,

Mar Cornelio, O., Bron Fonseca, B., & Gulín González, J. (2020). Sistema de Laboratorios Remoto para el estudio de la Microbiología y Parasitología Médica. Revista Cubana de Informática Médica,12(2).

Maridueña-Arroyave, M. R., & Febles-Estrada, A. (2016). A college degree recommendation model. DYNA,83, 29-34. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532016000500003&nrm=iso

Martín-Vicente, M. I., Gil-Solla, A., Ramos-Cabrer, M., Blanco-Fernández, Y., & López-Nores, M. (2009). Avoiding fake neighborhoods in e-commerce collaborative recommender systems: A semantic approach. 2009 Fourth International Workshop on Semantic Media Adaptation and Personalization,

Miao, J. F. (2014). Design and implementation of personalization recommendation system in mobile e-commerce. Advanced Materials Research,

Narayanan, T., & McGuinness, D. L. (2008, 10-15 Feb. 2008). Towards Leveraging Inference Web to Support Intuitive Explanations in Recommender Systems for Automated Career Counseling. First International Conference on Advances in Computer-Human Interaction,

Padilla, R. C., Ruiz, J. G., Alava, M. V., & Vázquez, M. L. (2018). Modelo de recomendación basado en conocimiento empleando números SVN. Infinite Study.

Palopoli, L., Rosaci, D., & Sarnè, G. M. (2013). Introducing specialization in e-commerce recommender systems. Concurrent Engineering,21(3), 187-196.

Pathak, B., Garfinkel, R., Gopal, R., Venkatesan, R., & Yin, F. (2010). Empirical Analysis of the Impact of Recommender Systems on Sales. Management Information Systems,27, 159-188.

Pazzani, M. J., Muramatsu, J., & Billsus, D. (1996). Syskill & Webert: Identifying interesting web sites. AAAI/IAAI, Vol. 1,

Penny, S. G., Akella, S., Buehner, M., Chevallier, M., Counillon, F., Draper, C., Frolov, S., Fujii, Y., Karspeck, A., & Kumar, A. (2017). Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations. (201801), 45.

Pu, P., Chen, L., & Kumar, P. (2008). Evaluating product search and recommender systems for E-commerce environments. Electronic Commerce Research,8(1-2), 1-27.

Qiu, Z., Chen, M., &Huang, J. (2010). Design of multi-mode e-commerce recommendation system. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics,

Ramírez, C. (2018). Algoritmo SVD aplicado a los sistemas de recomendación en el comercio. Tecnología, Investigación y Academia (TIA),6 (1), 18-27.

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM,4(3), 56 -59. https://doi.org/ACM 0002-0782/97/0300

Saini, S., Saumya, S., & Singh, J. P. (2017). Sequential purchase recommendation system for e-commerce sites. IFIP International Conference on Computer Information Systems and Industrial Management,

Smits, G., Nerzic, P., Lesot, M., & Pivert, O. (2019, 23-26 June 2019). FRELS: Fast and Reliable Estimated Linguistic Summaries. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

Smits, G., Yager, R. R., & Pivert, O. (2017, 9-12 July 2017). Interactive data exploration on top of linguistic summaries. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

Souali, K., El Afia, A., & Faizi, R. (2011). An automatic ethical-based recommender system for e-commerce. 2011 International Conference on Multimedia Computing and Systems,

Tintarev, N., & Masthoff, J. (2007). A survey of explanations in recommender systems. 2007 IEEE 23rd international conference on data engineering workshop,

Vázquez Y., Machín A., Velasteguí E., & V., P. (2018). Genetic algorithm for the generation of prediction rules in moodle courses. Revista electrónica Ciencia Digital,2(1), 7-17. https://doi.org/https://doi.org/10.33262/cienciadigital.v2i1.

Xiaosen, W. (2015). The design and realization of personalized e-commerce recommendation system. 2015 International Conference on Social Science and Technology Education,

Xue, W., Xiao, B., & Mu, L. (2015). Intelligent mining on purchase information and recommendation system for e-commerce. 2015 IEEE international conference on industrial engineering and engineering management (IEEM),

Ya, L. (2010). E-commercepersonalized recommendation technology based on expert system. 6th International Conference on Digital Content, Multimedia Technology and its Applications,

Yang, F., Liu, N., Wang, S., & Hu, X. (2018, 17-20 Nov. 2018). Towards Interpretation of Recommender Systems with Sorted Explanation Paths. 2018 IEEE International Conference on Data Mining (ICDM),

Zhang, L., Luo, T., Zhanga, F., & Wu, Y. (2018). A Recommendation Model Based on Deep Neural Network. IEEE Access(99), 1-10. https://doi.org/10.1109/ACCESS.2018.2789866

Published

2022-01-01

How to Cite

Bron Fonseca , B. ., & Mar Cornelio , O. . (2022). RECOMMENDATION SYSTEMS FOR DECISION MAKING. STATE OF THE ART : SISTEMAS DE RECOMENDACIÓN PARA LA TOMA DE DECISIONES. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 6(1), 149–164. https://doi.org/10.47230/unesum-ciencias.v6.n1.2022.289

Issue

Section

Artículos