AUTOMATED HOME WATER RECYCLING SYSTEM FOR IRRIGATION OF GREEN AREAS

SISTEMA AUTOMATIZADO DE RECICLADO DE AGUAS DOMICILIARIAS

Authors

  • Gema Carolyn Gutiérrez Zambrano
  • Eddy Patricio Delgado Laaz
  • Jipsson Vélez Molina
  • Genessis Valeriano Santillán

DOI:

https://doi.org/10.47230/unesum-ciencias.v4.n3.2020.281

Keywords:

Sewage water, Biodigester, Anaerobe, Automation

Abstract

The generation of household waste has been growing exponentially in recent decades, to satisfy human needs through basic services such as drinking water, this has caused gray water and sewage, the derivatives of that have increased problems to the health of the population , strong environmental impacts to the waters, the atmosphere, the soil and negative economic impacts in terms of land devaluation. In this regard, the present study carries out an investigation on an automated system for the treatment of household wastewater, which can be adapted to the needs of a home, thus presenting an anaerobic biodigester, characterized by being continuous flow, low organic load and having four process stages, in order to reduce costs, facilitate its implementation and meet the water requirements of a green wall with standard measures. It was based on the analytical method and the hypothetical deductive method, the results obtained, in the first place, were from the green wall, with a water requirement of approximately 105 liters per day, the biodigester was adapted for this requirement, in a plastic container of 220 L capacity, where an automated process is carried out that will improve the quality of the water, in order to use it for the irrigation of a green wall, thus integrating the Sustainable Development Goals in order to propose a solution, contributing to the social and environmental development of the world.

Downloads

Download data is not yet available.

References

Alicante Forestal (2017). Beneficios de los jardines verticales. Recuperado el:25/05/2018, en línea en: https://www.alicanteforestal.es/jardinesverticales/beneficios/#

Arduino. (2020). Arduino.cl. Obtenido de https://arduino.cl/arduino-uno/

Custodio Ruiz, A. (2008). Métodos y técnicas de investigación científica. Retrieved 19 August 2020, from https://www.gestiopolis.com/metodos-y-tecnicas-de-investigacion-cientifica/

FAO. (11 de 2016). FAO. Obtenido de Construir ciudades más verdes: nueve beneficios de los árboles urbanos: http://www.fao.org/zhc/detail-events/es/c/455658/

Fundación Proyecta Verde, & M.I. Municipalidad de Guayaquil. (2019). Guía de instalación de techos, paredes y fachadas verdes [Ebook] (1st ed., pp. 34-41). Guayaquil: Carla Risco, Andrea Castillo, Karolina Mesa, Juan Carlos Solís y Gabriel Freire. Retrieved from https://www.proyectaverde.com/descarga-la-guia

González Salcedo, L. O., & Olaya Arboleda, Y. (2009). Fundamentos para el diseño de Biodigestores. Departamento de Ingeniería.

Hydroplayas. (2018). Hydroplayas EP. Obtenido de http://hidroplayas.gob.ec/leydetransparencia/trampasdegrasa.pdf

Limón, G. (2013). LOS LODOS DE LAS PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES. Universidad de Guadalajara.

Lituma, C. (2010). Biodigestion anaerobia de lodos residuales de la planta de tratamiento de aguas residuales. Universidad Politécnica Salesiana.

Published

2021-03-01

How to Cite

Gutiérrez Zambrano, G. C., Delgado Laaz, E. P., Vélez Molina, J. ., & Valeriano Santillán, G. . (2021). AUTOMATED HOME WATER RECYCLING SYSTEM FOR IRRIGATION OF GREEN AREAS: SISTEMA AUTOMATIZADO DE RECICLADO DE AGUAS DOMICILIARIAS. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 5(2), 93–102. https://doi.org/10.47230/unesum-ciencias.v4.n3.2020.281