Biochemical parameters and kidney disease in patients with diabetes and hypertension: a systematic review 2020–2025
DOI:
https://doi.org/10.47230/unesum-ciencias.v9.n3.2025.293-303Keywords:
Biomarcador, Renal, Hipertensión, Diabetes,, Hipertensos, Parámetros bioquímicosAbstract
Chronic kidney disease (CKD) affects 1 in 3 people with diabetes and 1 in 5 with hypertension, and its early detection largely depends on serum and urinary biomarkers. The purpose was to synthesize the evidence published between 2020 and 2025 on the most commonly used or emerging biochemical parameters for the identification and monitoring of CKD in adults with diabetes and/or hypertension. Methodological assurance was achieved through a PRISMA systematic review. We carried out an exhaustive search regarding the information required for the research, for this we used several terms such as "Biomarker", "Renal", "Hypertension", "Diabetes", "Hypertensive", among others, likewise we managed to omit several terms that were not related to the subject, this search was developed through electronic pages with scientific origin Pubmed, Elsevier, Academic, Google, Science Direct, Scielo. Observational studies and clinical trials published during 2020 to 2025, original research, full-text articles, studies related to the research topic, research published in scientific journals were included. The main results showed that the markers were grouped into five subcategories: glomerular function (creatinine, eGFR, cystatin C), glomerular damage (albumin/urinary protein), tubular damage (KIM-1, NGAL, TIMP-2, IGFBP-7), inflammation-oxidative stress (IL-6, TNFR-1/2, MDA), and emerging biomarkers (FGF-23, extracellular vesicles). It is concluded that although creatinine-eGFR and albuminuria remain clinical pillars, cystatin C and tubular biomarkers offer greater sensitivity for early detection. Key gaps include pre-analytical standardization and validation in Latin American populations.
Downloads
References
Ahluwalia, T. S., Rönkkö, T. K. E., Eickhoff, M. K., Curovic, V. R., Siwy, J., Eder, S., Denicolò, S., Mayer, G., Mischak, H., & Rossing, P. (2024). Randomized trial of SGLT2 inhibitor identifies target proteins in diabetic kidney disease. Kidney International Reports, 9(2), 334–346.
Balu, D., Krishnan, V., Krishnamoorthy, V., Singh, R. B. S., Narayanasamy, S., & Ramanathan, G. (2022). Does serum kidney injury molecule-1 predict early diabetic nephropathy: A comparative study with microalbuminuria. Annals of African Medicine, 21(2), 136–139.
Beernink, J. M., Jongs, N., Doelman, C. J. A., Laverman, G. D., & Heerspink, H. J. L. (2025a). Albuminuria responses to dapagliflozin in patients with type 2 diabetes: a crossover trial. JAMA Network Open, 8(3), e251689–e251689.
Beernink, J. M., Jongs, N., Doelman, C. J. A., Laverman, G. D., & Heerspink, H. J. L. (2025b). Albuminuria responses to dapagliflozin in patients with type 2 diabetes: a crossover trial. JAMA Network Open, 8(3), e251689–e251689.
Beernink, J. M., Jongs, N., Doelman, C. J. A., Laverman, G. D., & Heerspink, H. J. L. (2025c). Albuminuria responses to dapagliflozin in patients with type 2 diabetes: a crossover trial. JAMA Network Open, 8(3), e251689–e251689.
Canki, E., Kho, E., & Hoenderop, J. G. J. (2024). Urinary biomarkers in kidney disease. Clinica Chimica Acta, 555, 117798.
Chu, C. D., Xia, F., Du, Y., Singh, R., Tuot, D. S., Lamprea-Montealegre, J. A., Gualtieri, R., Liao, N., Kong, S. X., Williamson, T., Shlipak, M. G., & Estrella, M. M. (2023). Estimated Prevalence and Testing for Albuminuria in US Adults at Risk for Chronic Kidney Disease. JAMA Network Open, 6(7), e2326230–e2326230. https://doi.org/10.1001/jamanetworkopen.2023.26230
Ciapponi, A. (2021). La declaración PRISMA 2020: una guía actualizada para reportar revisiones sistemáticas. Evidencia, Actualizacion En La Práctica Ambulatoria, 24(3), e002139–e002139.
El Feky, A. Y., Ghanem, Y. M., Abdelaaty, T. A., Elbordeny, M. M., & Neanaa, R. H. (2025). Urinary kidney injury molecule-1 as a biomarker for detection of albuminuria and retinopathy among patients with type 2 diabetes mellitus. Mansoura Medical Journal, 54(1), 5.
Goycheva, P., Petkova-Parlapanska, K., Georgieva, E., Karamalakova, Y., & Nikolova, G. (2023). Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications. International Journal of Molecular Sciences, 24(17), 13541.
Gyurászová, M., Gurecká, R., Bábí?ková, J., & Tóthová, ?. (2020). Oxidative stress in the pathophysiology of kidney disease: implications for noninvasive monitoring and identification of biomarkers. Oxidative Medicine and Cellular Longevity, 2020(1), 5478708.
He, D., Gao, B., Wang, J., Yang, C., Zhao, M. H., & Zhang, L. (2024a). The Difference Between Cystatin C- and Creatinine-Based Estimated Glomerular Filtration Rate and Risk of Diabetic Microvascular Complications Among Adults With Diabetes: A Population-Based Cohort Study. Diabetes Care, 47(5), 873–880. https://doi.org/10.2337/dc23-2364
He, D., Gao, B., Wang, J., Yang, C., Zhao, M. H., & Zhang, L. (2024b). The Difference Between Cystatin C- and Creatinine-Based Estimated Glomerular Filtration Rate and Risk of Diabetic Microvascular Complications Among Adults With Diabetes: A Population-Based Cohort Study. Diabetes Care, 47(5), 873–880. https://doi.org/10.2337/dc23-2364
Huang, F., Zeng, Y., Lv, L., Chen, Y., Yan, Y., Luo, L., Pan, R., Jiang, J., & Wei, X. (2023). Predictive value of urinary cell cycle arrest biomarkers for all cause-acute kidney injury: a meta-analysis. Scientific Reports, 13(1), 6037.
Inotani, S., Kashio, T., Osakabe, Y., Matsumoto, T., Nagao, Y., Ishihara, M., Iwata, H., Mitani, K., Hatakeyama, Y., & Horino, T. (2025). Efficacy of urinary [TIMP-2]?[IGFBP7], L-FABP, and NGAL levels for predicting community-acquired acute kidney injury in Japanese patients: a single-center, prospective cohort study. Clinical and Experimental Nephrology, 1–9.
Koshino, A., Schechter, M., Sen, T., Vart, P., Neuen, B. L., Neal, B., Arnott, C., Perkovic, V., Ridker, P. M., & Tuttle, K. R. (2022). Interleukin-6 and cardiovascular and kidney outcomes in patients with type 2 diabetes: new insights from CANVAS. Diabetes Care, 45(11), 2644–2652.
Lin, G. H., Lin, C. H., & Wang, J. S. (2025). Associations of cystatin C with incident chronic kidney disease and all-cause mortality in patients with normal glucose tolerance and prediabetes. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-07159-3
Liu, D., Yu, S., Zhang, Y., Li, Q., Kang, P., Wang, L., Han, R., Cheng, D., Chen, A., & Hou, X. (2025). Fibroblast growth factor 23 predicts incident diabetic kidney disease: A 4.6?year prospective study. Diabetes, Obesity and Metabolism, 27(4), 2232–2241.
Prashant, P., Dahiya, K., Bansal, A., Vashist, S., Dokwal, S., & Prakash, G. (2024). Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a potential early biomarker for diabetic nephropathy: a meta-analysis. International Journal of Biochemistry and Molecular Biology, 15(1), 1.
Schanz, M., Kimmel, M., Alscher, M. D., Amann, K., & Daniel, C. (2023). TIMP-2 and IGFBP7 in human kidney biopsies in renal disease. Clinical Kidney Journal, 16(9), 1434–1446. https://doi.org/10.1093/ckj/sfad010
Wani, Z. A., Ahmed, S., Saleh, A., Anna, V. R., Fahelelbom, K. M., Raju, S. K., Abu-Rayyan, A., & Bhat, A. R. (2025). Biomarkers in diabetic nephropathy: A comprehensive review of their role in early detection and disease progression monitoring. In Diabetes Research and Clinical Practice (Vol. 226). Elsevier Ireland Ltd. https://doi.org/10.1016/j.diabres.2025.112292
Yoon, S.-Y., Kim, J.-S., Jeong, K.-H., & Kim, S.-K. (2022). Acute kidney injury: biomarker-guided diagnosis and management. Medicina, 58(3), 340.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mirka Daniela Orellana Sanchez, Roberto Arnaldo Ponce Pincay, Nathaly Lizbeth Orozco Reyes, Jennifer Karolina Ocampos Medina

This work is licensed under a Creative Commons Attribution 4.0 International License.

