Predicción de rendimiento del curso en línea en la educación superior con datos de LMS: Una revisión sistemática de literatura

Autores/as

DOI:

https://doi.org/10.47230/unesum-ciencias.v9.n2.2025.202-219

Palabras clave:

Minería de datos educativos (EDM), LMS, predicción, rendimiento, educación superior

Resumen

Las instituciones de educación superior han incrementado el uso de sistemas de gestión de aprendizaje (LMS) para facilitar la educación en línea y optimizar los procesos formativos. Estos entornos no solo permiten el acceso remoto a contenidos y actividades, sino que también generan grandes volúmenes de datos sobre las interacciones entre estudiantes y docentes, los cuales pueden utilizarse para predecir el rendimiento en cursos en línea. Con la expansión de la educación virtual, se reconoce la necesidad de métodos precisos de predicción basados en datos registrados por los LMS. En este marco, la minería de datos educativa (EDM) se plantea como una herramienta eficaz para identificar patrones y apoyar la toma de decisiones académicas. Este artículo presenta una revisión sistemática de la literatura sobre el uso de datos de LMS para la predicción del rendimiento académico en línea, considerando técnicas y enfoques aplicados. Las técnicas más utilizadas incluyen regresión logística, árboles de decisión, redes bayesianas y redes neuronales, aplicadas al análisis de datos relacionados con accesos, calificaciones y participación. Asimismo, se identifican como métricas comunes de evaluación la exactitud, precisión y el error promedio, y como procesos clave la selección de características, normalización y validación cruzada. Este estudio proporciona una visión actualizada del uso de técnicas de aprendizaje automático en entornos virtuales, contribuyendo a futuras investigaciones sobre el análisis del rendimiento estudiantil en la educación superior en línea.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Laura Daniela Llivipuma Yánez, Universidad Técnica de Manabí

Facultad de Ciencias Informáticas, Universidad Técnica de Manabí; Portoviejo, Ecuador

Ermenson Ricardo Ordonez Avila, Universidad Técnica de Manabí

Departamento de Sistemas Computacionales; Universidad Técnica de Manabí; Portoviejo, Ecuador

Citas

Aitdaoud, M., Namir, A., & Talbi, M. (2023). A New Pre-Processing Approach Based on Clustering Users Traces According to their Learning Styles in Moodle LMS. International Journal of Emerging Technologies in Learning (IJET), 18(07), 226–242. https://doi.org/10.3991/IJET.V18I07.37635

Alam, A. (2023). Improving Learning Outcomes through Predictive Analytics: Enhancing Teaching and Learning with Educational Data Mining. Proceedings of the 7th International Conference on Intelligent Computing and Control Systems, ICICCS 2023, 249–257. https://doi.org/10.1109/ICICCS56967.2023.10142392

Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13–49. https://doi.org/10.1016/J.TELE.2019.01.007

Al-Hunaiyyan, A., Al-Sharhan, S., & Alhajri, R. (2020). Prospects and Challenges of Learning Management Systems in Higher Education. Article in International Journal of Advanced Computer Science and Applications, 11(12). https://doi.org/10.14569/IJACSA.2020.0111209

Alnasyan, B., Basheri, M., & Alassafi, M. (2024). The power of Deep Learning techniques for predicting student performance in Virtual Learning Environments: A systematic literature review. Computers and Education: Artificial Intelligence, 6, 100231. https://doi.org/10.1016/J.CAEAI.2024.100231

Alshammari, A. (2024). Using analytics to predict students’ interactions with learning management systems in online courses. Education and Information Technologies, 1–26. https://doi.org/10.1007/S10639-024-12709-9/METRICS

Angskun, T., Na Sritha, K., Srithong, A., Khopolklang, N., Kamollimsakul, S., Phithak, T., & Angskun, J. (2024). Using big data to assess an affective domain for distance education. Future Generation Computer Systems, 160, 131–139. https://doi.org/10.1016/J.FUTURE.2024.05.057

Ashrafi, A., Zareravasan, A., Rabiee Savoji, S., & Amani, M. (2020). Exploring factors influencing students’ continuance intention to use the learning management system (LMS): a multi-perspective framework. Interactive Learning Environments. https://doi.org/10.1080/10494820.2020.1734028

Banihashem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. A. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. Educational Research Review, 37, 100489. https://doi.org/10.1016/J.EDUREV.2022.100489

Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H. Y., & Hussain, A. (2022). Educational data mining to predict students’ academic performance: A survey study. Education and Information Technologies 2022, 28:1, 28(1), 905–971. https://doi.org/10.1007/S10639-022-11152-Y

Bertolini, R., Finch, S. J., & Nehm, R. H. (2021). Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation. International Journal of Educational Technology in Higher Education, 18(1), 1–23. https://doi.org/10.1186/S41239-021-00279-6/FIGURES/8

Bognár, L., & Fauszt, T. (2022). Factors and conditions that affect the goodness of machine learning models for predicting the success of learning. Computers and Education: Artificial Intelligence, 3, 100100. https://doi.org/10.1016/J.CAEAI.2022.100100

Bravo-Agapito, J., Romero, S. J., & Pamplona, S. (2021). Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study. Computers in Human Behavior, 115, 106595. https://doi.org/10.1016/J.CHB.2020.106595

Bringula, R., Batalla, M. Y., & Borebor, M. T. (2021). Modeling Computing Students’ Perceived Academic Performance in an Online Learning Environment. SIGITE 2021 - Proceedings of the 22nd Annual Conference on Information Technology Education, 99–104. https://doi.org/10.1145/3450329.3476856

Çebi, A., & Güyer, T. (2020). Students’ interaction patterns in different online learning activities and their relationship with motivation, self-regulated learning strategy and learning performance. Education and Information Technologies, 25(5), 3975–3993. https://doi.org/10.1007/S10639-020-10151-1/METRICS

Cheng, Z., Zhang, Z., Xu, Q., Maeda, Y., & Gu, P. (2023). A meta-analysis addressing the relationship between self-regulated learning strategies and academic performance in online higher education. Journal of Computing in Higher Education, 1–30. https://doi.org/10.1007/S12528-023-09390-1/METRICS

Contreras, L. E., Fuentes, H. J., Rodríguez, J. I., Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233

Cruz, E., González, M., & Rangel Ortiz, J. C. (2022). Técnicas de machine learning aplicadas a la evaluación del rendimiento y a la predicción de la deserción de estudiantes universitarios, una revisión. Prisma Tecnologico, ISSN-e 2076-8133, ISSN 2312-637X, Vol. 13, No. 1, 2022 (Ejemplar Dedicado a: Prisma Tecnológico), Págs. 77-87, 13(1), 77–87. https://dialnet.unirioja.es/servlet/articulo?codigo=9064058&info=resumen&idioma=SPA

Cui, Y., Song, X., Hu, Q., Li, Y., Shanthini, A., & Vadivel, T. (2021). Big data visualization using multimodal feedback in education. Computers & Electrical Engineering, 96, 107544. https://doi.org/10.1016/J.COMPELECENG.2021.107544

Cunha, A., & Figueira, Á. (2021a). Analysing students’ interaction sequences on Moodle to predict academic performance. http://ceur-ws.org

Cunha, A., & Figueira, Á. (2021b). Analysing students interaction sequences on Moodle to predict academic performance Analysing students’ interaction sequences on Moodle to predict academic performance. http://ceur-ws.org

Deeva, G., De Smedt, J., Saint-Pierre, C., Weber, R., & De Weerdt, J. (2022). Predicting student performance using sequence classification with time-based windows. Expert Systems with Applications, 209, 118182. https://doi.org/10.1016/J.ESWA.2022.118182

Dewi, M. A., Kurniadi, F. I., Murad, D. F., Rabiha, S. G., & Romli, A. (2023). Machine Learning Algorithms for Early Predicting Dropout Student Online Learning. 2023 IEEE 9th International Conference on Computing, Engineering and Design, ICCED 2023. https://doi.org/10.1109/ICCED60214.2023.10425359

Dhanalakshmi, R., Namasivayam, B., Revathy, S., & Balasubramani, S. (2023). Analyzing Student Performance and Interaction in Online Learning Environments using LMS Log Data. 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 - Proceedings, 1036–1042. https://doi.org/10.1109/ICECA58529.2023.10395561

Dirk Tempelaar, B. R. Q. N. (2021). The Contribution of Dispositional Learning Analytics to Precision Education. https://www.researchgate.net/publication/355336388_The_Contribution_of_Dispositional_Learning_Analytics_to_Precision_Education

Dol, S. M., & Jawandhiya, P. M. (2024). Systematic Review and Analysis of EDM for Predicting the Academic Performance of Students. Journal of The Institution of Engineers (India): Series B, 105(4), 1021–1071. https://doi.org/10.1007/S40031-024-00998-0/METRICS

Feldman-Maggor, Y., Blonder, R., & Tuvi-Arad, I. (2022). Let them choose: Optional assignments and online learning patterns as predictors of success in online general chemistry courses. The Internet and Higher Education, 55, 100867. https://doi.org/10.1016/J.IHEDUC.2022.100867

Hamad, F., Shehata, A., & Al Hosni, N. (2024). Predictors of blended learning adoption in higher education institutions in Oman: theory of planned behavior. International Journal of Educational Technology in Higher Education, 21(1), 1–28. https://doi.org/10.1186/S41239-024-00443-8/TABLES/15

Han, H. (2023). Fuzzy clustering algorithm for university students’ psychological fitness and performance detection. Heliyon, 9(8), e18550. https://doi.org/10.1016/J.HELIYON.2023.E18550

Hernández-García, Á., Cuenca-Enrique, C., Del-Río-Carazo, L., & Iglesias-Pradas, S. (2024). Exploring the relationship between LMS interactions and academic performance: A Learning Cycle approach. Computers in Human Behavior, 155, 108183. https://doi.org/10.1016/J.CHB.2024.108183

Huang, Q., & Chen, J. (2024). Enhancing academic performance prediction with temporal graph networks for massive open online courses. Journal of Big Data, 11(1), 1–26. https://doi.org/10.1186/S40537-024-00918-5/FIGURES/6

Huang, Q., & Zeng, Y. (2024). Improving academic performance predictions with dual graph neural networks. Complex and Intelligent Systems, 10(3), 3557–3575. https://doi.org/10.1007/S40747-024-01344-Z/FIGURES/7

Imhof, C., Comsa, I. S., Hlosta, M., Parsaeifard, B., Moser, I., & Bergamin, P. (2023). Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models. IEEE Transactions on Learning Technologies, 16(5), 648–663. https://doi.org/10.1109/TLT.2022.3221495

Job, M. A., & Pandey, J. (2020). Academic Performance Analysis Framework for Higher Education by Applying Data Mining Techniques.

Josefina, K., & Torres, R. (2022). Técnicas de clasificación para la predicción del desempeño de los estudiantes usando minería de datos. Benemérita Universidad Autónoma de Puebla. https://hdl.handle.net/20.500.12371/18244

Jovanovic, J., Mirriahi, N., Gaševi?, D., Dawson, S., & Pardo, A. (2019). Predictive power of regularity of pre-class activities in a flipped classroom. Computers & Education, 134, 156–168. https://doi.org/10.1016/J.COMPEDU.2019.02.011

Jovanovi?, J., Saqr, M., Joksimovi?, S., & Gaševi?, D. (2021). Students matter the most in learning analytics: The effects of internal and instructional conditions in predicting academic success. Computers & Education, 172, 104251. https://doi.org/10.1016/J.COMPEDU.2021.104251

Joy, J., & Pillai, R. V. G. (2022). Review and classification of content recommenders in E-learning environment. Journal of King Saud University - Computer and Information Sciences, 34(9), 7670–7685. https://doi.org/10.1016/J.JKSUCI.2021.06.009

Juan, S. (2021). Promoting engagement of nursing students in online learning: Use of the student-generated question in a nursing leadership course. Nurse Education Today, 97. https://doi.org/10.1016/J.NEDT.2020.104710

Kaensar, C., & Wongnin, W. (2023). Analysis and Prediction of Student Performance Based on Moodle Log Data using Machine Learning Techniques. International Journal of Emerging Technologies in Learning (IJET), 18(10), 184–203. https://doi.org/10.3991/IJET.V18I10.35841

Kerruish, E. (2024). Postdigital Teaching of Critical Thinking in Higher Education: Non-Instrumentalised Sociality and Interactivity. Postdigital Science and Education, 1–20. https://doi.org/10.1007/S42438-024-00456-6/METRICS

Kew, S. N., & Tasir, Z. (2022). Learning Analytics in Online Learning Environment: A Systematic Review on the Focuses and the Types of Student-Related Analytics Data. Technology, Knowledge and Learning, 27(2), 405–427. https://doi.org/10.1007/S10758-021-09541-2/METRICS

Kuhlmann, S. L., Plumley, R., Evans, Z., Bernacki, M. L., Greene, J. A., Hogan, K. A., Berro, M., Gates, K., & Panter, A. (2024). Students’ active cognitive engagement with instructional videos predicts STEM learning. Computers & Education, 216, 105050. https://doi.org/10.1016/J.COMPEDU.2024.105050

Le, M. D., Nguyen, H. H., Nguyen, D. L., & Nguyen, V. A. (2020a). How to Forecast the Students’ Learning Outcomes Based on Factors of Interactive Activities in a Blended Learning Course. ACM International Conference Proceeding Series, 11–15. https://doi.org/10.1145/3404709.3404711

Le, M. D., Nguyen, H. H., Nguyen, D. L., & Nguyen, V. A. (2020b). How to Forecast the Students’ Learning Outcomes Based on Factors of Interactive Activities in a Blended Learning Course. ACM International Conference Proceeding Series, 11–15. https://doi.org/10.1145/3404709.3404711

Li, X., Zhang, Y., Cheng, H., Li, M., & Yin, B. (2022). Student achievement prediction using deep neural network from multi-source campus data. Complex and Intelligent Systems, 8(6), 5143–5156. https://doi.org/10.1007/S40747-022-00731-8/FIGURES/5

Luo, Y., Han, X., & Zhang, C. (2024). Prediction of learning outcomes with a machine learning algorithm based on online learning behavior data in blended courses. Asia Pacific Education Review, 25(2), 267–285. https://doi.org/10.1007/S12564-022-09749-6/METRICS

Mancilla-Vela, G., Leal-Gatica, P., Sánchez-Ortiz, A., & Vidal-Silva, C. (2020). Factors associated to student success in online learning: a data mining analysis. Formacion Universitaria, 13(6), 23–36. https://doi.org/10.4067/S0718-50062020000600023

Mancilla-Vela, G., Leal-Gatica, P., Sánchez-Ortiz, A., Vidal-Silva, C., Mancilla-Vela, G., Leal-Gatica, P., Sánchez-Ortiz, A., & Vidal-Silva, C. (2020). Factores asociados al éxito de los estudiantes en modalidad de aprendizaje en línea: un análisis en minería de datos. Formación Universitaria, 13(6), 23–36. https://doi.org/10.4067/S0718-50062020000600023

Maraza-Quispe, B., Valderrama-Chauca, E. D., Cari-Mogrovejo, L. H., & Apaza-Huanca, J. M. (2021). Predictive Model of Student Academic Performance from LMS data based on Learning Analytics. ACM International Conference Proceeding Series, 13–19. https://doi.org/10.1145/3498765.3498768

Meletiou-Mavrotheris, M., Katzis, K., Sofianidis, A., Stylianidou, N., Konstantinou-Katzi, P., Ting, T. T., Lin Teh, S., & Wee, M. C. (2022). Ascertaining the Online Learning Behaviors and Formative Assessments Affecting Students’ Academic Performance during the COVID-19 Pandemic: A Case Study of a Computer Science Course. Education Sciences 2022, Vol. 12, Page 935, 12(12), 935. https://doi.org/10.3390/EDUCSCI12120935

Morales Carrillo, J. J., Trujillo Utreras, V. K., Cevallos Molina, S. K., & Hiraida Monserrate, S. C. (2019). Minería de datos en educación: una revisión literaria. Revista ESPAMCIENCIA, ISSN-e 1390-8103, Vol. 10, No. Extra 1, 2019, Págs. 14-20, 10(1), 14–20. https://dialnet.unirioja.es/servlet/articulo?codigo=7020087&info=resumen&idioma=ENG

Naseem, M., Chaudhary, K., & Sharma, B. (2022). Predicting Freshmen Attrition in Computing Science using Data Mining. Education and Information Technologies, 27(7), 9587–9617. https://doi.org/10.1007/S10639-022-11018-3/METRICS

Orozco Iguasnia, J. B., & Villarroel Sánchez, M. de J. (2021). Aplicación de técnicas de minería de datos para predecir el desempeño académico de los estudiantes de la escuela ‘Lic. Angélica Villón L.’ Revista Científica y Tecnológica UPSE (RCTU), 8(2), 68–75. https://doi.org/10.26423/RCTU.V8I2.637

Páez, A. R. (2023). Predicción del rendimiento académico mediante selección de características de estudiantes universitarios. Revista Electrónica Sobre Tecnología, Educación y Sociedad, 10(19). https://www.ctes.org.mx/index.php/ctes/article/view/801

Palanci, A., Y?lmaz, R. M., & Turan, Z. (2024). Learning analytics in distance education: A systematic review study. Education and Information Technologies, 1–22. https://doi.org/10.1007/S10639-024-12737-5/TABLES/6

Park, H. S., & Yoo, S. J. (2021). Early Dropout Prediction in Online Learning of University using Machine Learning. International Journal on Informatics Visualization, 5(4), 347–353. https://doi.org/10.30630/JOIV.5.4.732

Pecuchova, J., & Drlik, M. (2023). Predicting Students at Risk of Early Dropping Out from Course Using Ensemble Classification Methods. Procedia Computer Science, 225, 3223–3232. https://doi.org/10.1016/J.PROCS.2023.10.316

Perkash, A., Shaheen, Q., Saleem, R., Rustam, F., Villar, M. G., Alvarado, E. S., Torre Diez, I. de la, & Ashraf, I. (2024). Feature optimization and machine learning for predicting students’ academic performance in higher education institutions. Education and Information Technologies, 1–25. https://doi.org/10.1007/S10639-024-12698-9/METRICS

Poellhuber, L. V., Poellhuber, B., Desmarais, M., Leger, C., & Manh-Chien Vu, M. (2023). Cluster-Based Performance of Student Dropout Prediction as a Solution for Large Scale Models in a Moodle LMS. ACM International Conference Proceeding Series, 592–598. https://doi.org/10.1145/3576050.3576146

Quispe, B. M., Apfata, J. E. N., Figueroa, R. C. Q., & Solis, M. A. V. (2021). Design proposal of a personalized Dashboard to optimize teaching-learning in Virtual Learning Environments. ACM International Conference Proceeding Series, 77–84. https://doi.org/10.1145/3498765.3498777

Ramaswami, G. S., Susnjak, T., Mathrani, A., & Umer, R. (2020). Predicting Students Final Academic Performance using Feature Selection Approaches. 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2020. https://doi.org/10.1109/CSDE50874.2020.9411605

Rico-Juan, J. R., Cachero, C., & Macià, H. (2024). Study regarding the influence of a student’s personality and an LMS usage profile on learning performance using machine learning techniques. Applied Intelligence, 54(8), 6175–6197. https://doi.org/10.1007/S10489-024-05483-1/TABLES/4

Saidani, O., Umer, M., Alshardan, A., Alturki, N., Nappi, M., & Ashraf, I. (2024). Student academic success prediction in multimedia-supported virtual learning system using ensemble learning approach. Multimedia Tools and Applications, 1–26. https://doi.org/10.1007/S11042-024-18669-Z/METRICS

Sáiz-Manzanares, M. C., Marticorena-Sánchez, R., Rodríguez-Díez, J. J., Rodríguez-Arribas, S., Díez-Pastor, J. F., & Ji, Y. P. (2021). Improve teaching with modalities and collaborative groups in an LMS: an analysis of monitoring using visualisation techniques. Journal of Computing in Higher Education, 33(3), 747–778. https://doi.org/10.1007/S12528-021-09289-9/FIGURES/9

Salihoun, M. (2020). State of Art of Data Mining and Learning Analytics Tools in Higher Education. International Journal of Emerging Technologies in Learning, 15(21), 58–76. https://doi.org/10.3991/IJET.V15I21.16435

Sharma, P., & Sharma, Dr. S. (2020). DATA MINING TECHNIQUES FOR EDUCATIONAL DATA: A REVIEW. International Journal of Engineering Technologies and Management Research, 5(2), 166–177. https://doi.org/10.29121/IJETMR.V5.I2.2018.641

Stojanov, A., & Daniel, B. K. (2024). A decade of research into the application of big data and analytics in higher education: A systematic review of the literature. Education and Information Technologies, 29(5), 5807–5831. https://doi.org/10.1007/S10639-023-12033-8/FIGURES/3

Toring, H., Legaspi, G., Omolon, J., Amadeo, R., Amadeo, E., Opolentisima, Q., Barina, V., Cacho, T., Illustrimo, F., & Cortes, S. (2023). Evaluation of students’ satisfaction toward an adopted learning management system at Indiana Aerospace University: A structural equation modelling approach. Asia Pacific Management Review, 28(3), 336–346. https://doi.org/10.1016/J.APMRV.2022.12.002

Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., & Ragos, O. (2020). Fuzzy-based active learning for predicting student academic performance. ACM International Conference Proceeding Series. https://doi.org/10.1145/3410352.3410823

Uzir, N. A. A., Gaševic, D., Jovanovic, J., Matcha, W., Lim, L. A., & Fudge, A. (2020). Analytics of time management and learning strategies for effective online learning in blended environments. ACM International Conference Proceeding Series, 392–401. https://doi.org/10.1145/3375462.3375493

Van Goidsenhoven, S., Bogdanova, D., Deeva, G., Vanden Broucke, S., De Weerdt, J., & Snoeck, M. (2020). Predicting student success in a blended learning environment. ACM International Conference Proceeding Series, 17–25. https://doi.org/10.1145/3375462.3375494

Veguru, H. S. K., Naren, J., & Singam, Y. (2024). Student’s Interest and Opinion Towards Online Education. Procedia Computer Science, 233, 590–596. https://doi.org/10.1016/J.PROCS.2024.03.248

Viberg, O., Khalil, M., & Baars, M. (2020). Self-regulated learning and learning analytics in online learning environments: A review of empirical research. ACM International Conference Proceeding Series, 524–533. https://doi.org/10.1145/3375462.3375483

Wang, F. H. (2021). Interpreting log data through the lens of learning design: Second-order predictors and their relations with learning outcomes in flipped classrooms. Computers & Education, 168, 104209. https://doi.org/10.1016/J.COMPEDU.2021.104209

Wang, Q., & Mousavi, A. (2023). Which log variables significantly predict academic achievement? A systematic review and meta-analysis. British Journal of Educational Technology, 54(1), 142–191. https://doi.org/10.1111/BJET.13282

Wong, J. T., & Hughes, B. S. (2023). Leveraging learning experience design: digital media approaches to influence motivational traits that support student learning behaviors in undergraduate online courses. Journal of Computing in Higher Education, 35(3), 595–632. https://doi.org/10.1007/S12528-022-09342-1/FIGURES/4

Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166–173. https://doi.org/10.1016/J.CHB.2019.04.015

Ya?c?, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1–19. https://doi.org/10.1186/S40561-022-00192-Z/TABLES/14

Yang, Y., Hooshyar, D., Pedaste, M., Wang, M., Huang, Y. M., & Lim, H. (2020). Predicting course achievement of university students based on their procrastination behaviour on Moodle. Soft Computing, 24(24), 18777–18793. https://doi.org/10.1007/S00500-020-05110-4/METRICS

Yoo, J. E., Rho, M., & Lee, Y. (2022a). Online Students’ Learning Behaviors and Academic Success: An Analysis of LMS Log Data from Flipped Classrooms via Regularization. IEEE Access, 10, 10740–10753. https://doi.org/10.1109/ACCESS.2022.3144625

Yoo, J. E., Rho, M., & Lee, Y. (2022b). Online Students’ Learning Behaviors and Academic Success: An Analysis of LMS Log Data From Flipped Classrooms via Regularization. IEEE Access, 10, 10740–10753. https://doi.org/10.1109/ACCESS.2022.3144625

Yürüm, O. R., Ta?kaya-Temizel, T., & Y?ld?r?m, S. (2023). The use of video clickstream data to predict university students’ test performance: A comprehensive educational data mining approach. Education and Information Technologies, 28(5), 5209–5240. https://doi.org/10.1007/S10639-022-11403-Y/FIGURES/4

Zabolotniaia, M., Cheng, Z., Dorozhkin, E. M., & Lyzhin, A. I. (2020). Use of the LMS Moodle for an effective implementation of an innovative policy in higher educational institutions. International Journal of Emerging Technologies in Learning, 15(13), 172–189. https://doi.org/10.3991/IJET.V15I13.14945

Zhang, L., & Yu, X. (2022). Intelligent retrieval method of mobile learning resources in the intelligent higher education system. International Journal of System Assurance Engineering and Management, 13(6), 3079–3091. https://doi.org/10.1007/S13198-021-01455-7/TABLES/2

Zhang, S., Zhou, Z., Zheng, W. X., & Tang, X. (2024). Frequency-domain Volterra kernel-based adaptation: Formulations and algorithms. Signal Processing, 216, 109295. https://doi.org/10.1016/J.SIGPRO.2023.109295

Descargas

Publicado

2025-05-25

Cómo citar

Llivipuma Yánez, L. D. ., & Ordonez Avila, E. R. (2025). Predicción de rendimiento del curso en línea en la educación superior con datos de LMS: Una revisión sistemática de literatura. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 9(2), 202–219. https://doi.org/10.47230/unesum-ciencias.v9.n2.2025.202-219

Número

Sección

Artículos de Revisión