Procesamiento enzimático de algas: innovaciones y aplicaciones en la industria alimentaria. Una revisión

Autores/as

Palabras clave:

alimentos, algas marinas, compuestos bioactivos, reacción enzimática

Resumen

Las algas son organismos acuáticos que pueden ser unicelulares o pluricelulares, y se encuentran en diversos hábitats, desde aguas dulces hasta marinas. Su composición nutricional incluye lípidos, proteínas y carbohidratos, con variaciones según el tipo de alga y las condiciones de cultivo. Por ejemplo, algunas especies son ricas en proteínas o carbohidratos, lo que las hace valiosas en la industria alimentaria. Además, las microalgas son fuente de compuestos bioactivos como carotenoides y ficobiliproteínas, que tienen aplicaciones en cosméticos, suplementos y alimentos funcionales. El procesamiento enzimático se ha destacado como una técnica efectiva para extraer estos compuestos, utilizando enzimas que descomponen las paredes celulares sin dañar los bioactivos. Esta metodología es más sostenible que los métodos tradicionales que emplean disolventes agresivos. Las algas también se utilizan como gelificantes y estabilizantes en productos alimenticios, lo que amplía su aplicación en la industria. En conclusión, las algas marinas representan una rica fuente de nutrientes y compuestos bioactivos, y su procesamiento enzimático permite una extracción eficiente y ecológica de sus beneficios. Esto abre nuevas oportunidades para el desarrollo de productos alimenticios innovadores y sostenibles, combinando nutrición y tecnología en la industria alimentaria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jhonnatan Placido Aldas Morejon, Universidad Nacional Del Cuyo

Universidad Nacional de Cuyo, Argentina

Karol Yannela Revilla Escobar, Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador SEDE Esmeraldas, Ecuador

Bladimir Zamora Basurto, Investigador Independiente

Investigador Independiente, Ecuador

Hernán Humberto Chevez Véliz, Universidad Técnica Estatal de Quevedo

Universidad Técnica Estatal de Quevedo, Ecuador

Citas

Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Dolganyuk, V., Michaud, P., & Ivanova, S. (2021). Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Mar. Drugs. , 19(381). https://doi.org/10.3390/md19070381

Asanka-Sanjeewa, K., Herath, K., Young-Sang, K., You-Jin, J., & Kim, S.-K. (2023). Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. TrAC Trends in Analytical Chemistry, 167. https://doi.org/https://doi.org/10.1016/j.trac.2023.117266

Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh, E., Prosekov, A., Noskova, S., Ivanova, S., Fendri, I., Smaoui, S., Abdelkafi, S., Michaud, P., & Dolganyuk, V. (2021). Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. Plants , 11(6). https://doi.org/ 10.3390/plants11060780

Blessing, M., & Pletschke, B. I. (2024). Sequential and enzyme-assisted extraction of algal bioproducts from Ecklonia maxima. Enzyme and Microbial Technology, 173. https://doi.org/https://doi.org/10.1016/j.enzmictec.2023.110364

Cai, X., Chen, Y., Xie, X., Yao, D., Ding, C., & Chen, M. (2019). Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res, 15(11), 1884-1894. .

Capelli, R., Talbott, S., & Ding, L. (2019). Astaxanthin sources: suitability for human health and nutrition. . Function Foods Health Dis., 430–445. https://doi.org/10.31989/ffhd.v9i6.584.

Eze, C., Onyejiaka, C., Ihim, S., Ayoka, T., Aduba, C., Ndukwe, J., Nwaiwu, O., & Onyeaka, H. ( 2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiol., 9(1), 55–74. https://doi.org/https://doi.org/10.3934%2Fmicrobiol.2023004

Galasso, C., Gentile, A. O., Noonan, D. M., Sansone, C., & Albini, A. B. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. . Nutrients , 11, 1–22 . https://doi.org/10.3390/nu11061226

Gong, M., & Bassi, A. (2016). Carotenoides de microalgas: una revisión de los avances recientes. . Biotechnol Adv., 34, 1396–1412. https://doi.org/i: 10.1016/j.biotechadv.2016.10.005.

Hao, H., Fu, M., Yan, R., He, B., Li, M., Liu, Q., Zhang, X., & R., H. (2019). Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. . Food Agric. Immunol., 30, 937–954. https://doi.org/10.1080/09540105.2019.1646216.

Kim, B., Lee, S. Y., Narasimhan, A., Kim, S., & Oh, Y. (2022). Cell disruption and astaxanthin extraction from Haematococcus pluvialis: recent advance. Bioresour. Technol, 343. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126124

Lago-Tagliapietra, B., & Pedrosa-Silva, M. T. (2023). Brown algae and their multiple applications as functional ingredient in food production. Food Research International(167). https://doi.org/https://doi.org/10.1016/j.foodres.2023.112655

Li, J., Yang, F., Jin, L., Wang, Y. J., He, P., & Chen, Y. (2018). Safety and quality of the green tide algal species Ulva prolifera for option of human consumption: A nutrition and contamination study. Chemosphere., 210, 1021–1028. https://doi.org/ 10.1016/j.chemosphere.2018.07.076.

Li, Y., Fu, X., Duan, D., Xu, J., & Gao, X. (2018). Comparison study of bioactive substances and nutritional components of brown algae Sargassum fusiforme strains with different vesicle shapes. J. Appl. Phycol., 30. https://doi.org/10.1007/s10811-018-1543-x

Maneein, S., Milledge, J. J., Nielsen, B., & Harvey, P. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4. https://doi.org/https://doi.org/10.3390/fermentation4040100

Matos, Â. P., Novelli, E., & Tribuzi, G. (2022). Use of algae as food ingredient: sensory acceptance and commercial products. Front. Food. Sci. Technol., 4. https://doi.org/https://doi.org/10.3389/frfst.2022.989801

Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2019). The rise of seaweed gastronomy: phycogastronomy. Botanica Marina, 62(3), 195–209. https://doi.org/10.1515/bot-2018-0041

Nigam, P., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci, 37, 52–68. https://doi.org/10.1016/j.pecs.2010.01.003.

Ortiz, J., Aguilera, J. M., Flores, M., Lemus-Mondaca, R., Larrazabal, M. J., Miranda, J. M., & Aubourg, S. P. (2021). Protective Effect of Red Algae (Rhodophyta) Extracts on Essential Dietary Components of Heat-Treated Salmon. Antioxidants, 10(7), 1108. https://doi.org/10.3390/antiox10071108

Parsaeimehr, A., & Ozbay, G. (2024). Enzymatic processing of algae for food applications. Biocatalysis and Agricultural Biotechnology, 56. https://doi.org/https://doi.org/10.1016/j.bcab.2024.103042

Praiboon, J., Palakas, S., Noiraksa, T., & Miyashita, K. (2018). Seasonal variation in nutritional composition and anti-proliferative activity of brown seaweed, Sargassum oligocystum. J. Appl. Phycol., 30, 101–111. https://doi.org/10.1007/s10811-017-1248-6

Quitral, R., Morales, G., Sepúlveda, L., & & Schwartz, M. (2020). Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional. Revista chilena de nutrición, 39(4). https://doi.org/http://dx.doi.org/10.4067/S0717-75182012000400014

Rhein-Knudsen, N., Diego, R.-W., & Jarle-Horn, S. (2023). Extraction of high purity fucoidans from brown seaweeds using cellulases. International Journal of Biological Macromolecules, 228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.12.261

Romero, A. M., Picado-Morales, J., Klose, L., & Liese, A. (2022). Enzyme-Assisted Extraction of Ulvan from the Green Macroalgae Ulva fenestrata. Molecules , 28(19), 6781. https://doi.org/https://doi.org/10.3390/molecules28196781

Sedighi, M., Jalili, H., Darvish, M., Sadeghi, S., & Ranaei-Siadat, S.-O. (2019). Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chemistry, 284, 334–339. https://doi.org/10.1016/j.foodchem.2019.01.111

Siddhnath, K., Reddy-Surasani, V., Singh, A., Singh, S., Hauzoukim, Murthy, L., & Gopalbhai-Baraiya, K. (2024). Bioactive compounds from micro algae and its application in foods:a review. Discover Food, 4(1), 1-20. https://doi.org/https://doi.org/10.1007/s44187-024-00096-6

Sompura, Y., Chayadevi, H., Vaishnavi, G., Karthik, M., & Ashokkumar, K. (2021). Recent trends of useful algae and their role in food production, healthcare and pharmaceuticals products: A mini-review. Journal of Current Opinion in Crop Science,, 2(3), 384-390. https://doi.org/http://dx.doi.org/10.62773/jcocs.v2i3.120

Sudhakar, M., Kumar, B., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. , 228, 1320–1333. . https://doi.org/10.1016/j.jclepro.2019.04.287.

Suganya, T., Varman, M., & Masjuki, H. R. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026.

Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., & Zhao, M. (2018). Microalgae cultivation and metabolites production: a comprehensive review. Biofuel Bioprod Bioref., 304–324. https://doi.org/10.1002/bbb.1864

Asaduzzaman, M., Rahman Turjo, N., Mou, S. J., Angon, B., & Khan, R. (2024). Bioactive Compounds from Microalgae and their Applications in Functional Foods. 1–27. https://doi.org/10.22541/essoar.172019468.87953313/v1

Bastos, C. F. S., Carpena, M., Chamorro, F., Nogueira-Marques, R., Silva, A., Barroso, M. F., Santos, M., & Prieto, M. A. (2024). Phlorotannins as Bioactive Agents from Brown Algae: Chemical Characterization and Extraction Methods. IECBM 2024, 61. https://doi.org/10.3390/proceedings2024103061

Boi, VN, NTM, Cuong, DX, Ha, & HT. (2020). Florotanino antioxidante del alga parda Sargassum dupplicatum: extracción asistida por enzimas y purificación. Mundo, 4, 62-68. https://doi.org/https://doi.org/10.11648/j.wjfst.20200402.17

Chini, G., Lauceri, R., Faraloni, C., Silva Benavides, A. M., & Torzillo, G. (2023). Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. In Photochemical and Photobiological Sciences (Vol. 22, Issue 8). Springer International Publishing. https://doi.org/10.1007/s43630-023-00407-3

Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M. M., & Pereira, L. (2020). A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel, Switzerland), 10(3). https://doi.org/10.3390/life10030019

Dini, I. (2023). The Potential of Algae in the Nutricosmetic Sector. Molecules, 28(10). https://doi.org/10.3390/molecules28104032

Eze, C. N., Onyejiaka, C. K., Ihim, S. A., Ayoka, T. O., Aduba, C. C., Ndukwe, J. K., Nwaiwu, O., & Onyeaka, H. (2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiology, 9(1), 55–74. https://doi.org/10.3934/microbiol.2023004

Fourniére, M., Latire, T., Lang, M., Teme, N., Bourgougnon, N., & Bedoux, G. (2019). Producción de fracciones poli y oligosacáridas activas de Ulva sp. combinando extracción asistida por enzimas (EAE) y despolimerización. Metabolitos, 9, 182. https://doi.org/https://doi.org/10.3390/metabo9090182

Martínez, M., Martínez-González, C. A., Kim, D.-H., Santiesteban-Romero, B., Reyes-Pardo, H., Villaseñor-Zepeda, K. R., Meléndez-Sánchez, E. R., Ramírez-Gamboa, D., Díaz-Zamorano, A. L., Sosa-Hernández, J. E., Coronado-Apodaca, K. G., Gámez-Méndez, A. M., Iqbal, H. M. N., & Parra-Saldivar, R. (2022). Microalgae Bioactive Compounds to Topical Applications Products-A Review. Molecules (Basel, Switzerland), 27(11). https://doi.org/10.3390/molecules27113512

Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2019). The rise of seaweed gastronomy: phycogastronomy. Botanica Marina, 62(3), 195–209. https://doi.org/10.1515/bot-2018-0041

Oh, JY, Kim, EA, Kang, SI, Yang, HW, Ryu, B., Wang, L., Lee, JS, Jean, & YJ. (2020). Efectos protectores del fucoidan aislado del extracto asistido por celuclastos de esporofilas de Undaria pinnatifida contra el estrés oxidativo inducido por AAPH modelo de pez cebra in vitro e in vivo. Moléculas, 25, 2361. https://doi.org/https://doi.org/10.3390/moléculas25102361

O’Connor, J., Garcia-Vaquero, M., Meaney, S., & Tiwari, B. K. (2022). Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Marine Drugs, 20(5). https://doi.org/10.3390/md20050317

Ortiz, J., Aguilera, J. M., Flores, M., Lemus-Mondaca, R., Larrazabal, M. J., Miranda, J. M., & Aubourg, S. P. (2021). Protective Effect of Red Algae (Rhodophyta) Extracts on Essential Dietary Components of Heat-Treated Salmon. Antioxidants, 10(7), 1108. https://doi.org/10.3390/antiox10071108

Sathasivam, R., & Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16(1). https://doi.org/10.3390/md16010026

Sedighi, M., Jalili, H., Darvish, M., Sadeghi, S., & Ranaei-Siadat, S.-O. (2019). Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chemistry, 284, 334–339. https://doi.org/10.1016/j.foodchem.2019.01.111

Shannon, E., & Abu-Ghannam, N. (2018). Extracción enzimática de fucoxantina de algas pardas. En t. J. . Ciencia de los alimentos , 53, 2195-2204. https://doi.org/https://doi.org/10.1111/ijfs.13808

Vaish, S., & Pathak, B. (2023). Mangrove synthesized bio-nanomaterial and its applications: A review. Environmental Nanotechnology, Monitoring & Management, 20, 100866. https://doi.org/https://doi.org/10.1016/j.enmm.2023.100866

Vásquez, V., Martínez, R., & Bernal, C. (2019). Extracción enzimática de proteínas de las algas Macrocystis pyrifera y Chondracanthus chamissoi: caracterización de los extractos y su potencial bioactivo. J. Aplica. Ficol, 31, 1999-2010. https://doi.org/https://doi.org/10.1007/s108110181712y

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982. https://doi.org/10.1007/s10811-016-0974-5Xiao, Q., Weng, H., Ni, H., Hong, Q., Lin, K., & Xiao, A. (2019). Propiedades fisicoquímicas y de gel del agar extraído mediante enzimas y métodos asistidos por enzimas. Hidrocoloides alimentarios, 87, 530-540. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.08.041

Zhao, X., Zhang, X., Liu, H., Zhu, H., & Zhu, Y. (2019). Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci. Biotechnol., 28, 1637-1647, . https://doi.org/https://doi.org/10.1007/s10068-019-00608-6

Publicado

2025-02-14

Cómo citar

Aldas Morejon, J. P., Revilla Escobar, K. Y., Zamora Basurto, B., & Chevez Véliz, H. H. (2025). Procesamiento enzimático de algas: innovaciones y aplicaciones en la industria alimentaria. Una revisión. Agrosilvicultura Y Medioambiente, 2(2). Recuperado a partir de https://revistas.unesum.edu.ec/agricultura/index.php/ojs/article/view/44

Número

Sección

Artículo de Revisión