Procesamiento enzimático de algas: innovaciones y aplicaciones en la industria alimentaria. Una revisión
Palabras clave:
alimentos, algas marinas, compuestos bioactivos, reacción enzimáticaResumen
Las algas son organismos acuáticos que pueden ser unicelulares o pluricelulares, y se encuentran en diversos hábitats, desde aguas dulces hasta marinas. Su composición nutricional incluye lípidos, proteínas y carbohidratos, con variaciones según el tipo de alga y las condiciones de cultivo. Por ejemplo, algunas especies son ricas en proteínas o carbohidratos, lo que las hace valiosas en la industria alimentaria. Además, las microalgas son fuente de compuestos bioactivos como carotenoides y ficobiliproteínas, que tienen aplicaciones en cosméticos, suplementos y alimentos funcionales. El procesamiento enzimático se ha destacado como una técnica efectiva para extraer estos compuestos, utilizando enzimas que descomponen las paredes celulares sin dañar los bioactivos. Esta metodología es más sostenible que los métodos tradicionales que emplean disolventes agresivos. Las algas también se utilizan como gelificantes y estabilizantes en productos alimenticios, lo que amplía su aplicación en la industria. En conclusión, las algas marinas representan una rica fuente de nutrientes y compuestos bioactivos, y su procesamiento enzimático permite una extracción eficiente y ecológica de sus beneficios. Esto abre nuevas oportunidades para el desarrollo de productos alimenticios innovadores y sostenibles, combinando nutrición y tecnología en la industria alimentaria.
Descargas
Citas
Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Dolganyuk, V., Michaud, P., & Ivanova, S. (2021). Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Mar. Drugs. , 19(381). https://doi.org/10.3390/md19070381
Asanka-Sanjeewa, K., Herath, K., Young-Sang, K., You-Jin, J., & Kim, S.-K. (2023). Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. TrAC Trends in Analytical Chemistry, 167. https://doi.org/https://doi.org/10.1016/j.trac.2023.117266
Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh, E., Prosekov, A., Noskova, S., Ivanova, S., Fendri, I., Smaoui, S., Abdelkafi, S., Michaud, P., & Dolganyuk, V. (2021). Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. Plants , 11(6). https://doi.org/ 10.3390/plants11060780
Blessing, M., & Pletschke, B. I. (2024). Sequential and enzyme-assisted extraction of algal bioproducts from Ecklonia maxima. Enzyme and Microbial Technology, 173. https://doi.org/https://doi.org/10.1016/j.enzmictec.2023.110364
Cai, X., Chen, Y., Xie, X., Yao, D., Ding, C., & Chen, M. (2019). Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res, 15(11), 1884-1894. .
Capelli, R., Talbott, S., & Ding, L. (2019). Astaxanthin sources: suitability for human health and nutrition. . Function Foods Health Dis., 430–445. https://doi.org/10.31989/ffhd.v9i6.584.
Eze, C., Onyejiaka, C., Ihim, S., Ayoka, T., Aduba, C., Ndukwe, J., Nwaiwu, O., & Onyeaka, H. ( 2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiol., 9(1), 55–74. https://doi.org/https://doi.org/10.3934%2Fmicrobiol.2023004
Galasso, C., Gentile, A. O., Noonan, D. M., Sansone, C., & Albini, A. B. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. . Nutrients , 11, 1–22 . https://doi.org/10.3390/nu11061226
Gong, M., & Bassi, A. (2016). Carotenoides de microalgas: una revisión de los avances recientes. . Biotechnol Adv., 34, 1396–1412. https://doi.org/i: 10.1016/j.biotechadv.2016.10.005.
Hao, H., Fu, M., Yan, R., He, B., Li, M., Liu, Q., Zhang, X., & R., H. (2019). Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. . Food Agric. Immunol., 30, 937–954. https://doi.org/10.1080/09540105.2019.1646216.
Kim, B., Lee, S. Y., Narasimhan, A., Kim, S., & Oh, Y. (2022). Cell disruption and astaxanthin extraction from Haematococcus pluvialis: recent advance. Bioresour. Technol, 343. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126124
Lago-Tagliapietra, B., & Pedrosa-Silva, M. T. (2023). Brown algae and their multiple applications as functional ingredient in food production. Food Research International(167). https://doi.org/https://doi.org/10.1016/j.foodres.2023.112655
Li, J., Yang, F., Jin, L., Wang, Y. J., He, P., & Chen, Y. (2018). Safety and quality of the green tide algal species Ulva prolifera for option of human consumption: A nutrition and contamination study. Chemosphere., 210, 1021–1028. https://doi.org/ 10.1016/j.chemosphere.2018.07.076.
Li, Y., Fu, X., Duan, D., Xu, J., & Gao, X. (2018). Comparison study of bioactive substances and nutritional components of brown algae Sargassum fusiforme strains with different vesicle shapes. J. Appl. Phycol., 30. https://doi.org/10.1007/s10811-018-1543-x
Maneein, S., Milledge, J. J., Nielsen, B., & Harvey, P. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4. https://doi.org/https://doi.org/10.3390/fermentation4040100
Matos, Â. P., Novelli, E., & Tribuzi, G. (2022). Use of algae as food ingredient: sensory acceptance and commercial products. Front. Food. Sci. Technol., 4. https://doi.org/https://doi.org/10.3389/frfst.2022.989801
Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2019). The rise of seaweed gastronomy: phycogastronomy. Botanica Marina, 62(3), 195–209. https://doi.org/10.1515/bot-2018-0041
Nigam, P., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci, 37, 52–68. https://doi.org/10.1016/j.pecs.2010.01.003.
Ortiz, J., Aguilera, J. M., Flores, M., Lemus-Mondaca, R., Larrazabal, M. J., Miranda, J. M., & Aubourg, S. P. (2021). Protective Effect of Red Algae (Rhodophyta) Extracts on Essential Dietary Components of Heat-Treated Salmon. Antioxidants, 10(7), 1108. https://doi.org/10.3390/antiox10071108
Parsaeimehr, A., & Ozbay, G. (2024). Enzymatic processing of algae for food applications. Biocatalysis and Agricultural Biotechnology, 56. https://doi.org/https://doi.org/10.1016/j.bcab.2024.103042
Praiboon, J., Palakas, S., Noiraksa, T., & Miyashita, K. (2018). Seasonal variation in nutritional composition and anti-proliferative activity of brown seaweed, Sargassum oligocystum. J. Appl. Phycol., 30, 101–111. https://doi.org/10.1007/s10811-017-1248-6
Quitral, R., Morales, G., Sepúlveda, L., & & Schwartz, M. (2020). Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional. Revista chilena de nutrición, 39(4). https://doi.org/http://dx.doi.org/10.4067/S0717-75182012000400014
Rhein-Knudsen, N., Diego, R.-W., & Jarle-Horn, S. (2023). Extraction of high purity fucoidans from brown seaweeds using cellulases. International Journal of Biological Macromolecules, 228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.12.261
Romero, A. M., Picado-Morales, J., Klose, L., & Liese, A. (2022). Enzyme-Assisted Extraction of Ulvan from the Green Macroalgae Ulva fenestrata. Molecules , 28(19), 6781. https://doi.org/https://doi.org/10.3390/molecules28196781
Sedighi, M., Jalili, H., Darvish, M., Sadeghi, S., & Ranaei-Siadat, S.-O. (2019). Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chemistry, 284, 334–339. https://doi.org/10.1016/j.foodchem.2019.01.111
Siddhnath, K., Reddy-Surasani, V., Singh, A., Singh, S., Hauzoukim, Murthy, L., & Gopalbhai-Baraiya, K. (2024). Bioactive compounds from micro algae and its application in foods:a review. Discover Food, 4(1), 1-20. https://doi.org/https://doi.org/10.1007/s44187-024-00096-6
Sompura, Y., Chayadevi, H., Vaishnavi, G., Karthik, M., & Ashokkumar, K. (2021). Recent trends of useful algae and their role in food production, healthcare and pharmaceuticals products: A mini-review. Journal of Current Opinion in Crop Science,, 2(3), 384-390. https://doi.org/http://dx.doi.org/10.62773/jcocs.v2i3.120
Sudhakar, M., Kumar, B., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. , 228, 1320–1333. . https://doi.org/10.1016/j.jclepro.2019.04.287.
Suganya, T., Varman, M., & Masjuki, H. R. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026.
Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., & Zhao, M. (2018). Microalgae cultivation and metabolites production: a comprehensive review. Biofuel Bioprod Bioref., 304–324. https://doi.org/10.1002/bbb.1864
Asaduzzaman, M., Rahman Turjo, N., Mou, S. J., Angon, B., & Khan, R. (2024). Bioactive Compounds from Microalgae and their Applications in Functional Foods. 1–27. https://doi.org/10.22541/essoar.172019468.87953313/v1
Bastos, C. F. S., Carpena, M., Chamorro, F., Nogueira-Marques, R., Silva, A., Barroso, M. F., Santos, M., & Prieto, M. A. (2024). Phlorotannins as Bioactive Agents from Brown Algae: Chemical Characterization and Extraction Methods. IECBM 2024, 61. https://doi.org/10.3390/proceedings2024103061
Boi, VN, NTM, Cuong, DX, Ha, & HT. (2020). Florotanino antioxidante del alga parda Sargassum dupplicatum: extracción asistida por enzimas y purificación. Mundo, 4, 62-68. https://doi.org/https://doi.org/10.11648/j.wjfst.20200402.17
Chini, G., Lauceri, R., Faraloni, C., Silva Benavides, A. M., & Torzillo, G. (2023). Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. In Photochemical and Photobiological Sciences (Vol. 22, Issue 8). Springer International Publishing. https://doi.org/10.1007/s43630-023-00407-3
Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M. M., & Pereira, L. (2020). A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel, Switzerland), 10(3). https://doi.org/10.3390/life10030019
Dini, I. (2023). The Potential of Algae in the Nutricosmetic Sector. Molecules, 28(10). https://doi.org/10.3390/molecules28104032
Eze, C. N., Onyejiaka, C. K., Ihim, S. A., Ayoka, T. O., Aduba, C. C., Ndukwe, J. K., Nwaiwu, O., & Onyeaka, H. (2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiology, 9(1), 55–74. https://doi.org/10.3934/microbiol.2023004
Fourniére, M., Latire, T., Lang, M., Teme, N., Bourgougnon, N., & Bedoux, G. (2019). Producción de fracciones poli y oligosacáridas activas de Ulva sp. combinando extracción asistida por enzimas (EAE) y despolimerización. Metabolitos, 9, 182. https://doi.org/https://doi.org/10.3390/metabo9090182
Martínez, M., Martínez-González, C. A., Kim, D.-H., Santiesteban-Romero, B., Reyes-Pardo, H., Villaseñor-Zepeda, K. R., Meléndez-Sánchez, E. R., Ramírez-Gamboa, D., Díaz-Zamorano, A. L., Sosa-Hernández, J. E., Coronado-Apodaca, K. G., Gámez-Méndez, A. M., Iqbal, H. M. N., & Parra-Saldivar, R. (2022). Microalgae Bioactive Compounds to Topical Applications Products-A Review. Molecules (Basel, Switzerland), 27(11). https://doi.org/10.3390/molecules27113512
Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2019). The rise of seaweed gastronomy: phycogastronomy. Botanica Marina, 62(3), 195–209. https://doi.org/10.1515/bot-2018-0041
Oh, JY, Kim, EA, Kang, SI, Yang, HW, Ryu, B., Wang, L., Lee, JS, Jean, & YJ. (2020). Efectos protectores del fucoidan aislado del extracto asistido por celuclastos de esporofilas de Undaria pinnatifida contra el estrés oxidativo inducido por AAPH modelo de pez cebra in vitro e in vivo. Moléculas, 25, 2361. https://doi.org/https://doi.org/10.3390/moléculas25102361
O’Connor, J., Garcia-Vaquero, M., Meaney, S., & Tiwari, B. K. (2022). Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Marine Drugs, 20(5). https://doi.org/10.3390/md20050317
Ortiz, J., Aguilera, J. M., Flores, M., Lemus-Mondaca, R., Larrazabal, M. J., Miranda, J. M., & Aubourg, S. P. (2021). Protective Effect of Red Algae (Rhodophyta) Extracts on Essential Dietary Components of Heat-Treated Salmon. Antioxidants, 10(7), 1108. https://doi.org/10.3390/antiox10071108
Sathasivam, R., & Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16(1). https://doi.org/10.3390/md16010026
Sedighi, M., Jalili, H., Darvish, M., Sadeghi, S., & Ranaei-Siadat, S.-O. (2019). Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chemistry, 284, 334–339. https://doi.org/10.1016/j.foodchem.2019.01.111
Shannon, E., & Abu-Ghannam, N. (2018). Extracción enzimática de fucoxantina de algas pardas. En t. J. . Ciencia de los alimentos , 53, 2195-2204. https://doi.org/https://doi.org/10.1111/ijfs.13808
Vaish, S., & Pathak, B. (2023). Mangrove synthesized bio-nanomaterial and its applications: A review. Environmental Nanotechnology, Monitoring & Management, 20, 100866. https://doi.org/https://doi.org/10.1016/j.enmm.2023.100866
Vásquez, V., Martínez, R., & Bernal, C. (2019). Extracción enzimática de proteínas de las algas Macrocystis pyrifera y Chondracanthus chamissoi: caracterización de los extractos y su potencial bioactivo. J. Aplica. Ficol, 31, 1999-2010. https://doi.org/https://doi.org/10.1007/s108110181712y
Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982. https://doi.org/10.1007/s10811-016-0974-5Xiao, Q., Weng, H., Ni, H., Hong, Q., Lin, K., & Xiao, A. (2019). Propiedades fisicoquímicas y de gel del agar extraído mediante enzimas y métodos asistidos por enzimas. Hidrocoloides alimentarios, 87, 530-540. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.08.041
Zhao, X., Zhang, X., Liu, H., Zhu, H., & Zhu, Y. (2019). Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci. Biotechnol., 28, 1637-1647, . https://doi.org/https://doi.org/10.1007/s10068-019-00608-6
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Jhonnatan Placido Aldas Morejon, Karol Yannela Revilla Escobar, Bladimir Zamora Basurto, Hernán Humberto Chevez Véliz

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.